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ANALYSIS OF THE LURIA-DELBRUjCK DISTRIBUTION 
USING DISCRETE CONVOLUTION POWERS 

W. T. MA, 
G. vH. SANDRI AND 
S. SARKAR,* Boston University 

Abstract 

The Luria-Delbrack distribution arises in birth-and-mutation processes in 
population genetics that have been systematically studied for the last fifty years. 
The central result reported in this paper is a new recursion relation for com- 
puting this distribution which supersedes all past results in simplicity and com- 
putational efficiency: po - e-"; P = (m/n) 

IT.%-o 
p,/(n - i + 1) where m is the 

expected number of mutations. A new relation for the asymptotic behavior of pn 
( ; c/n2) is also derived. This corresponds to the probability of finding a very large 
number of mutants. A formula for the z-transform of the distribution is also 
reported. 

BACTERIAL MUTAGENESIS; DIRECTED MUTATIONS 

AMS 1991 SUBJECT CLASSIFICATION: PRIMARY 60E05 
SECONDARY 92 D10 

1. Introduction 

Unicellular organisms such as bacteria usually reproduce by binary fission. Sometimes 
they are also transformed so that new strains arise. For bacteria, one transformation that 
was the subject of much discussion in the 1920s and 1930s was that from being sensitive 
to a lethal virus to being resistant to that virus (see Sarkar (1991 a) for details). One 
school held that the bacteria were transformed due to interaction with virus in their 
environment (the 'directed mutation' hypothesis). Another school held that transformed 
bacteria (called 'mutants') arose by random changes or 'mutations' during the growth of 
the bacteria (the 'random mutation hypothesis'). 

In order to distinguish between these two hypotheses, Luria and Delbriick (1943) 
devised an ingenious experiment. A single bacterium would be allowed to reproduce to 
form several (presumably) identical bacteria. Each of these would then be allowed to 
reproduce for many generations in separate test-tubes. If the rate of cell division is 
roughly constant, and the bacteria are allowed to grow for a time allowing n cell 
divisions, on average each test-tube would contain about 2" cells. The contents of each of 
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* Postal address: Boston Theoretical Biology Group, Center for the Philosophy and History of 

Science, Boston University, 745 Commonwealth Avenue, Boston, MA 02215, USA. 

255 

This content downloaded by the authorized user from 192.168.82.211 on Sat, 17 Nov 2012 20:42:07 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


256 W. T. MA, G. vH. SANDRI AND S. SARKAR 

these test-tubes would then be separately plated on to plates containing the virus. All 
sensitive cells would die. Resistant cells, however, would prosper and soon form visible 
colonies. The number of such colonies would, therefore, be equal to the number of 
resistant (mutant) cells present in the test-tube at the time of plating. 

Under the hypothesis of directed mutation, cells became mutants only due to 
interaction with the virus after plating. This is basically a probabilistic process. The 
number of mutants (represented by visible colonies) on a plate would therefore follow 
the usual Poisson distribution. If Pk is the probability of finding k mutants, Pk = 

e-"mk/k! where the Poisson parameter, m, is equal to the product of the probability of 
a single cell becoming mutant and the number of cells being plated (that is, roughly 2"). 
The variance of this distribution is equal to the mean. 

Under the hypothesis of random mutation, mutations would have been occurring with 
some small probability during the growth of the cells in the test-tubes prior to plating. 
Moreover, once a mutation has taken place, the mutant cell produces more mutants 
through exponential growth. Each of these mutants would form colonies after plating. 
The distribution of the number of mutants in this case is known as the Luria-Delbruick 
distribution (Sarkar (1990)). 

Luria and Delbriick (1943) were unable to provide any procedures for calculating this 
distribution, though they provided a formula for its variance. However, the problem of 
the determination of the distribution itself has attracted considerable attention among 
statisticians over the years. Haldane was probably the first to provide a partial solution 
in an unpublished paper from 1946 (summarized by Sarkar (1991 b)). Lea and Coulson 
(1949) were the first to describe a procedure for calculating the distribution. More 
importantly, they derived the generating function 

(1) F(x)= (1 - x)m(0-O)/x 

for the distribution where m is the expected number of mutations. Koch (1982) and 
Stewart et al. (1990) have produced alternative procedures for calculating the distribu- 
tion. Armitage (1952), (1953), Bartlett (1978), Fu et al. (1982) and Li et al. (1985) have 
studied other aspects of the distribution, while Mandelbrot (1974) provided a formula 
for its Laplace transform. 

The central result reported in this paper is a new recursion relation to compute the 

Luria-Delbriick distribution (Equation (22), using the Lea-Coulson generating function 
(Equation (1)) as the starting point. In simplicity and computational efficiency this new 
recursion relation supersedes previous results. The asymptotic behavior of the prob- 
ability pk, of finding k mutants, for large k is obtained (Equation (23)). A formula for the 
z-transform of the distribution is also presented (Equation (24)). 

Section 2 gives a sketch of the derivation of Equation (1). It is not particularly original, 
essentially following Lea and Coulson (1949). However, it is included for the sake of 
completeness and because it helps make precise the nature of the biological model being 
discussed here. Section 3 then reviews the use of convolution products and powers of 
discrete sequences. These are necessary for the derivation of the asymptotic behavior of 
the Pk which is taken up in Section 4 along with the derivation of the recursion relation 

This content downloaded by the authorized user from 192.168.82.211 on Sat, 17 Nov 2012 20:42:07 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Analysis of the Luria-Delbrack distribution using discrete convolution powers 257 

itself. Section 5 gives a derivation of the formula for the z-transform and Section 6 
briefly discusses the relevance of these results to recent experimental work in bacterial 
mutagenesis. Laborious proofs that would otherwise interrupt the flow of the derivations 
have been relegated to appendices. 

2. The generating function 

The generating function (Equation (1)) for the Luria-Delbriick distribution is 
obtained from a model of bacterial growth and mutation where mutation and growth of 
the mutant cells are assumed to be stochastic while growth of normal cells is assumed to 
be deterministic. Assume, with Lea and Coulson (1949), that each culture in a test-tube 
is grown from a single bacterium and that growth is exponential. What is wanted is the 
probability, p,, of finding r mutants in the culture at time t, when the size of the culture is 
n,. Let mutagenesis be strictly proportional to the growth rate of the culture. Then A, the 
mutation rate per cell division, is constant and the expected number of mutations, m, is 
given by m = 4un,. 

In order to obtain an equation for the p,, consider a very large (in principle infinite) 
population of cultures. Then p, is the proportion of culture in which r mutants are 
present at time t, or culture size n,. For notational convenience, n, will henceforth be 
written as n. Assume that in the interval (t, t + dt), the culture grows from size n to 
n + dn. If p, + (dp,/dn)dn is the proportion of cultures that have r mutants at time 
t + dt, or culture size n + dn, assuming dn to be small enough, 

(2) p, +-• 
dn = p,_ idn +(r - 1)- + p, 1 -ldn-r . 

dn \) n) 

The first term on the right-hand side comes from cultures which had r - 1 mutants at 
time t, and either (i) a mutation occurred during (t, t + dt), giving the Yldn part or (ii) a 
mutant cell underwent division, giving the (r - 1)dn/n part. The second term is simply 
the proportion of cultures with r mutants at t but no further mutations were produced by 
new mutation or mutant cell division; the two such possibilities are subtracted from p,. 
Reorganizing terms and changing variables to m = 

-n, 

dpr 
r r - 1+ 

(3) - + Pr + - 
Pr- 

Pr- 1 + - 
. dm m m 

This equation was first obtained by Lea and Coulson ((1949), pp. 266-267). 
Now consider the generating function F(x, m) of the distribution. Then 

(4) F(x, m)= po + px + px2 + ... X, Prxr. 
r-O 

The dependence on m is captured in the p, which are functions of m because 
the probability of finding a certain number of mutants changes with time and 
m = n,. In fact, po would decrease and all other p, would increase with time, 
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assuming that mutations are not reversible (i.e. back mutations are negligible). From 
Equation (4), 

(5) 
O= rxr 

l pr dXr ,=o 

and 

(6) x' 
dPr 

Om r-O0 dm 

Multiplying Equation (3) by x' and summing from r = 0 to oo, 

a dpr a X 
• x' + x'p, + - xr- 1rp 

r=O dm r=O mr=o 

(7) 
oo X2 oo 

=x E x'-'p,,r- 
+- E (r - 

1)xr-2pr-_. r=O m r=0 

Using Equations (5) and (6) and using p, = 0 for all r <0, Equation (7) becomes 

OF x OF x2 OF 
+F +-- = xF +-- X 

am m Ox m dx 
or 

OF OF (8) m - = m(x - 1)F + (x2 - x). am dx 

Equation (8) was known to Bartlett (1978), p. 135, who obtained it in an entirely 
different manner. The general solution of Equation (8) can be obtained by Monge 
theory (see, e.g. Hildebrand (1976), pp. 387-392). However, if F(O, m) = po = e-m 
(as shown by Luria and Delbrfick (1943) and Lea and Coulson (1949)), F(x, m) = 

(1 - x)m(l-xYx. In fact, this solution can easily be checked by substitution. More 
detail can be obtained from Lea and Coulson (1949). Now, since what is of interest 
is the generating function at a particular time, that is, the time of plating, m can be 
treated as fixed. Therefore, the function that is of interest is F(x)= (1 - x)m(-x/x 
(Equation (1)). 

3. Discrete convolution powers 

Let the power series representation for an analytic function w of the complex 
argument z be w(z) = 

k_=o akk. If z is a function of the real variable x, its power series 
can be represented as z(x)= ~=, a0kxk. Ultimately, what is needed is the power series 
representation in powers of x for w with argument z(x). 

In order to compute this representation, discrete convolution powers are particularly 
helpful. They are defined using discrete convolution products which are treated in detail 
by Feller (1968), pp. 266-270. If a = (ao, 

a•,., 
a, ... ) and similarly b and c are 

infinite sequences, the discrete convolution product c of a and b, denoted by a * b, is 
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defined by c, = 711=0 a,-kbk. The discrete convolution product is commutative, associ- 
ative, and distributive over term-by-term addition of sequences. 

Discrete convolution powers of an infinite sequence are now recursively defined by 

a*':= a; a*":= a*"n- 1a, for n > 1. 

Using this definition, if z(x) is the monomial in x defined by Equation (2), raising z(x) to 
the nth power gives 

(9) z"(x)Z= (a*")kXk 
k-O 

where the (a*")k are recursively given by 

1 k 
(a*R)o = ao", (a*")k =- 

- 
(in - k + 

i)ai(a*")k-i 
for k > 0. 

This relation is easily proved by induction. Note that the sum is a linear combination of 
powers of ao. Hence it is defined when ao-- 0. Now, (a*n)k is the coefficient of xk in 
(ao + anx + a2x2 + .. )"n. Therefore, if a0 = 0, then (a*")k = 0 for all k <n. This case 

(ao- =0) is particularly important because it holds for the Luria-Delbriick distribution. 
Moreover, (a*o)k = 0 for k > 0 and (a*O)_ = 1. Now, consider the power series represen- 
tation of the analytic function w: 

(10) w = 
(w(z))(x) = bkXk. 

k=O 

In order to compute this representation, as was noted above, the bk have to be calculated. 
Now, 

Z bkxk= k 
iZj 

k=O j=0 

= T , ( k (a*i)kXk) 

by Equation (9), and then, interchanging sums: 

(1 1) T bkXk -' 
e 

(a*j)kXk k-= k=Oj=- 

If ao = 0, then because (a*j)k = 0 for all j > k, 
o k 

(W(Z))(X) = E a 
Ot(a* )kxk 

k=Oj=O 

Therefore, from Equation (10), 

(12) bk = * 
i=O 
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260 W. T. MA, G. vH. SANDRI AND S. SARKAR 

It is important to note that the sum is finite, a fact which is the key to the explicit results 
given below. It is sometimes instructive to rewrite Equation (12) in a simple mnemonic 
form where the index k is suppressed and a convention to sum over repeated indices 
assumed: 

(13) b = aka*k. 

In the general case, when ao # 0 the formula for bk is slightly more complicated 
because ao appears with all the powers of x. Denote the sequence d = (0, a,, 

a2,. ') 
Then 

(14) bk/ 
= (a*jk j+ 

j-1I i-j+1 

where Cj is the binomial coefficient (Cj = i!/j!(i -j)!). Equation (14) is proved in 
Appendix A. Note that when a0 = 0, the second term in Equation (14) disappears and 
Equation (12) is obtained as expected. 

Finally, as an example, consider the exponential of a power series which will turn out 
to be relevant below. Here w = ez = •-o bkXk with z = Xk-O akxk. The usual result (see 
e.g. Mayer and Mayer (1940), p. 460) is 

k k 

bk = epo E ( aj)" n ! 
nj-Oj,- I 

with nj defined by the constrained sum, .k_, jnj = k. In the convolution powers 
representation, simply ak = 1/k! and 

k 

bk = ea o (a*j)k/j! 
j-1 

thus avoiding the complexities of the constrained sums. 

4. The recursion relation and the asymptotic behavior of the Luria-Delbrfck distribution 

The generating function for the Luria-Delbriick distribution (Equation (1)) can be 
written as 

(15) F(x) = (1 
- x)m(' -xyx = exp((m(1 - x)/x)ln(1 - x)) 

where m is the expected number of mutations. This function can now be interpret- 
ed.as 

(16) w(z)= ez-m = px' 
i-O 

with 
1-x o 

z = m In(1 - x) + m = aix' 
X i-0 

where 
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m 
(17) ao = 0, a = 

+ 1), (i> 1). i(i + 1) 

Equation (14) was first obtained by Lea and Coulson (1949). z can be shown to be 
analytic in the complex plane as long as x is in the unit disc. It follows from Equation (17) 
that 0o" ak = m and 

00 

(18) E pi 
= 1. 

i=0 

Note that the p, here are the same as the b, of the last section. The change of no- 
tation merely reflects the fact that these quantities are now to be interpreted as pro- 
babilities (of finding mutants) and Equation (18) merely verifies the usual sum rule of 
probabilities. 

It is now possible to derive a recursion relation for the p.. Differentiating Equation 
(16) with respect to x 

(19) w' = z'w. 

Differentiating Equation (19) a further n - 1 times, 
n-I 

(20) W(n)= E z(ni)w(i)Cr- i=O 

where the superscripts in parentheses denote the corresponding higher-order deriva- 
tives. Evaluating Equation (20) at x = 0 gives 

n-I 

np, = X (n - i)a,_i Pi. i=O 

Now, using Equation (17), 
n-I 

(21) np, = m E pl(n + 1 - i). 
i=O 

Since the sum in Equation (21) stops at n - 1, it can be used as a recursion relation once 
po is directly evaluated. This gives 

mn-1 
(22) po = e-m; Pn .-- 

p /(n 
- i + 1). 

n i=0 

This recursion relation is new and is the simplest and computationally most efficient 
procedure for calculating the Luria-Delbriick distribution obtained so far (for an 
extended discussion of past results, see Stewart et al. (1990)). For some detail about the 
increase in efficiency, see Section 6 (the discussion). 

It is also easy to obtain the asymptotic behavior of Pn for large n. This requires the 
systematic use of convolution powers. First, the asymptotic behavior of (a*m")n for large n 
must be computed. It turns out that 
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262 W. T. MA, G. vH. SANDRI AND S. SARKAR 

n-I M2 

(a*2)n = 2c2m2/n2 

=., 
(n - i)(n + 1- i)i(i + 1) 

where c2 is a constant to be evaluated. The proof of this equation is simple and elegant 
and is given in Appendix B. The asymptotic behavior of (a*k)n can now be calculated by 
induction over k. It turns out that (a*k)n --Ck2k-lmk/n2 where the Ck have to be 
evaluated. The proof is given in Appendix C. Numerical evaluation of (a*2), and (a*3), 
for large n gives 

c2 =1, c3 0.75, c4 0.50. 

The asymptotic behavior of p, can now be easily obtained. Using Equation (11); 

(23) 
p- 

= 
e-m (a*i)./i! 

= c/n2 for large n 
i-=1 

where 

c =e-m ci2 -l'~'/i!. 
i-= 1 

This result is new. It is remarkable that both ak (Equation (17)) and pk (Equation (23)) 
behave as k-2 for large k. Mandelbrot (1974) reports the first result, but not the second, 
which is more interesting because the asymptotic form of p, is interpreted as the 
probability of finding a very large number of mutants in a culture, usually called a 
'jackpot' in the experimental literature (following Luria and Delbriick (1943)). When 
m = 1, numerical evaluation of p, using Equation (22) suggests c = 1. As a consequence 
of the asymptotic behavior of the p,, the moments of the Luria-Delbriick distribution 
are all infinite. The nature of the divergence is logarithmic for the first moment, linear 
for the second, and quadratic for the third. The divergence of the moments has been 
noted before (e.g. by Luria and Delbruick (1943), Mandelbrot (1974), Sarkar (1991b)) 
though the explicit specification of the divergence is new. 

5. The z-transform 

Since the exponential of any analytic function is itself analytic, and #((1 - z)/z)ln(1 - z) 
is analytic when I z I < 1, a formula for the z-transform of the Luria-Delbriick distribu- 
tion can be easily written down. If the generating function of the distribution is written 
with a complex argument, z, 

F(z)=(1 - z)"m(l-zyz= pkZk 
k-O 

then 

SPkZk/Zn+i =(1 - Z)m(1-zYz/n+l 
k=0O 

and by analyticity of F(z) for I z I < 1, 
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(24) Pk (1- Z)M(1-zzzn + dz 
2ni 

where the contour of integration is around the origin. This result is not particularly 
useful. It is presented mainly for the sake of completeness and because Mandelbrot 
(1974) derived similar results in a much more complicated fashion. 

6. Discussion 

The renewed interest in the Luria-Delbrfick distribution which led to the derivation 
of Equations (22) and (23) has been motivated by some recent experimental results in 
biology that have generated considerable controversy. In their original experiments, 
Luria and Delbrfick (1943) observed that the distribution of mutants had a variance 
much higher than the mean. This observation was obviously inconsistent with the 
Poisson distribution and consistent with the expression for the variance they had 
derived for the Luria-Delbrfick distribution. They concluded, on this basis, that the 
random mutation hypothesis was true in the case of virus resistance. In the sub- 
sequent decade the same conclusion was extended to a wide variety of bacterial 
mutations using the same statistical argument and Lea and Coulson's numerical 
procedure for actually calculating the Luria-Delbriick pk'S (see Sarkar (1991 a) for details 
of this history). 

However, in 1988, Cairns et al. (1988) reported deviations from the Luria-Delbriick 
distribution for a mutation in a strain of bacteria from inability to ability to digest 
lactose. On the basis of this observation, and from the fact that the deviation was in the 
direction of decreased variance and seemed to be under genetic control, they concluded 
that some mutations were directed. 

Since evolutionary biology conventionally assumes that all mutagenesis is random (in 
the so-called 'neo-Darwinian synthesis'), these results generated considerable contro- 
versy. Many biologists argued that the observed deviations from the Luria-Delbriick 
distribution could be accounted for by the operation of secondary factors such as 
differential growth rate of mutant and non-mutant cells in the test-tubes, delayed 
appearance of mutants, and so on (see Sarkar (1990) for a review). 

In order to evaluate these conflicting claims it became imperative to compute the 
Luria-Delbrilck distribution systematically in the absence or presence of various 
secondary factors. This was first systematically accomplished by Stewart et al. (1990). 
The central result of the present paper (Equation (22)) is a new recursion relation to 
compute the Luria-Delbrfick distribution in the absence of secondary factors which is 
much simpler and computationally more efficient than the procedure of Stewart et al. 
(1990) and earlier work. 

Computational tests have been carried out on both ordinary single CPU machines 
(including a VAX 780) and on a CM-2 Connection Machine which allows massive 
parallel computation (up to 16000 processors). As far as the first possibility is concerned, 
Stewart (personal communication) has indicated that the use of Equation (22) speeds up 
computation by a factor of 6 over the older procedure of Stewart et al. (1990). The 
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new procedure for computing the basic Luria-Delbrick distribution has been in- 
corporated into the general environment for computing this distribution that can be 
obtained following the procedure given by Stewart et al. (1990), p. 180. Alternatively, 
programs in C and FORTRAN implementing Equation (22) are available from the 
Boston Theoretical Biology Group. When a CM-2 Connection Machine with only 
16 000 processors is used and advantage is taken of its 'dot product', the computations 
are speeded up, in general, by another factor of 10. Such a remarkable increase in 
efficiency is possible because the convolution product is formally similar to a dot 
product. The older procedure of Stewart et al. (1990) has not been implemented on a 
Connection Machine since it is superseded by Equation (22), so its possibilities under 
massively parallel computation are not known. A program implementing Equation (22) 
on the Connection Machine is also available from the Boston Theoretical Biology 
Group. 

Finally, it should be noted that the potential utility of discrete convolution powers and 
products is quite general. They can be used for the computation of many other statistical 
distributions. For instance, Feller (1968), pp. 268-270, has shown how the binomial, 
negative binomial, Poisson and geometric distributions can be computed using them. 
Moreover, Ma et al. (1991) have shown how the use of convolution powers greatly 
simplifies the computation of the configuration and cluster integrals in statistical 
mechanics. These examples and the possibilities they raise suggest that further inves- 
tigation of the mathematical properties of discrete convolution products and powers 
might well deserve serious consideration. 
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Appendix A: Proof of Equation (17) 

Consider the power series 
00 

(25) w(z)= Z akzk, 
k=O 

and 

(26) z(x)= E akXk. 
k=O 

What are needed are coefficients bk in the sum w(z)= 4k"-O bkXk. Observe that w(z)= 
w(z - ao + ao). Substituting Equation (26) into Equation (25), 

oo k 

(27) w(z) ak Ckaj(Z- ao)J k=O j=O 
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and 

(28) w(z - ao)= Z ak(Z - a)k. 
k=0O 

Subtracting Equation (27) from Equation (28) 
ao k-i 

w(z) - w(z - ao) = ak Z Ckak-j(Z - ao)j0 k=1 j=0 

From Equation (9) (z - ao)i = 
k•= (d*j)kxk, and from Equation (28), interchanging 

sums, 

w(z - ao) = ak(dk*)x + a 
n=1lk=1 

Hence: 
00 00 k-1 00 

b bk.Xk k a+ Ca- (d*i),Xi 0 k=1 j=1 i=1 

+ - (a*k•)x + 
n=1 k=1 

Interchanging sums and comparing coefficients of x for n 
- 

1, 

k k oo 
b = Z aj(a*j) + k (a*j)k Cjkka -i 

j=1 j=1 k=-j+1 

k CO 

-1 ( * 
)•j kj+ 

k 
cZOk- 

j 
j=1 k=j+l 

Appendix B: Proof of (a*2) , 2c2/n2 

For the Luria-Delbriick distribution, 

n-l 1 
(a*2)n=n 

k=i (n - k)(n + 1 - k)k(k + 1) 

Using partial fractions, after reindexing, 

2 n-' 1 1 

(a*2)n 

2 
n nl n(n + I)kl1 k (1 + 2/n)(k + 1) 

Define 

T2(n) - 
k= 1 k (1 + 2/n)(k + 1) 

Simply rearranging terms, 

n-1 1 2 n-' 1 

k=lk(k+1) n+2k=lk+1 
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When n gets big the first sum tends to 1 while the second sum tends to 0. Hence 
limn-o T2(n) = 1. Since (a*2) - 

= (2/n(n + 1))T2(n), the asymptotic behavior of (a*2)n is 
2/n2. 

Appendix C: Proof of (a*k)n - 2k-l k(n)/n2 

Using partial fractions, (a*k)n can be rewritten as 

2k-1 

(a*k),n Tk- (n) 
n(n + 1) 

where the Tk(n) are defined by 

n- 1 1 
Tk(n) = I 

=Tk-I ( (1 + 2/n)(l + 1)) 

By induction over k, Tk(n) will now be shown to be eventually decreasing for sufficiently 
large n. For k = 3, 

TI(n)I= T2(I) 1=-2 ( (1 + 2/n)(l + 1) 

where T2(l) is defined as in Appendix B. Note that 7T(l) is bounded. Let Ti. denote the 
minimum value of T2(1) for 1 

- 
n - 1. Also note that mi, is greater than 0 even when 

n -' oo. 

3 2 n-1 T2(n) 
T3(n + I)- T'(n) = T2(n) 3 - 

nT3( T3() (n + 3) (n + 2)(n + 3) 
=-2 

1 + 1 

3 27Tni, n -' 1 

n(n + 3) (n + 2)(n + 3)1=2 1 + 1 

For a sufficiently large n the difference in the T"3's will become negative since the 
sum in the second term grows logarithmically as n while other terms are of the same 
order n-2 (recall that PT(n) is bounded and T2in >0). Hence T7(n) is eventually 
decreasing. 

Now consider the inductive hypothesis on k that Tk-'(n) is eventually de- 
creasing. Note that this implies Tk-'(n) is bounded since it is always greater than 0. 
Further 

3 2 n-1 Tk-l(l) Tk(n + 1)- Tk(n ) Tk - l (I 
)- 

E f n(n + 3) (n + 2)(n + 3)1=k-1 (1 + I ) 

Following the same argument, the inductive hypothesis implies that Tk-'(n) is 
eventually decreasing so that for a sufficiently large n the difference in Tk's will 
become negative. Hence Tk(n) is eventually decreasing for all k. Since it is also bounded 
below by 0, a limit exists. Let 

lim_,• 
Tk(n) = Ck. This confirms the asymptotic behavior 

of (a*k)n. 
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